Вторая научно-техническая революция и ее последствия (кон. XIX - нач. XX в.)
Революционные преобразования в технике и технологиях
К рубежу XIX—XX вв. кардинально изменились основы научного мышления; переживает расцвет естествознание, идет создание единой системы наук. Этому способствовало открытие электрона и радиоактивности. Произошла новая научная революция, начавшаяся в физике и охватившая все основные отрасли науки. Ее представляют М. Планк, создавший квантовую теорию, и А. Эйнштейн, создавший теорию относительности, ознаменовавшие прорыв в область микромира.
В конце XIX — начале XX в. связь науки с производством приобрела более прочный и систематический характер; устанавливается тесная взаимосвязь науки с техникой, обусловливающая постепенное превращение науки в непосредственную производительную силу общества. Если до конца XIX в. наука оставалась «малой» (в этой сфере было занято небольшое число людей), то на рубеже XX в. способ организации науки изменился — возникли крупные научные институты, лаборатории, оснащенные мощной технической базой. «Малая» наука превращается в «большую» - численность занятых в этой сфере увеличилась, возникли специальные звенья научно-исследовательской деятельности, задачей которых стало скорейшее доведение теоретических решений до технического воплощения, в их числе — опытно-конструкторские разработки, производственные исследования, технологические, опытно-экспериментальные и др.
Процесс революционных преобразований в области науки охватил затем технику и технологию.
Создание новых отраслей На основе электричества была создана новая энергетическая основа промышленности и транспорта, т.е. решена крупнейшая техническая проблема. В 1867 г. в Германии Э.В. Сименс изобрел электромагнитный генератор с самовозбуждением, при помощи которого вращением проводника в магнитном поле можно получать и вырабатывать электрический ток. В 1870-е была изобретена динамо-машина, которую можно было использовать не только как генератор электроэнергии, но и как двигатель, превращающий электрическую энергию в механическую. В 1883 г. американский инженер Т. Эдисон создал первый современный генератор. Еще одна успешно решенная им задача — передача электроэнергии по проводам на значительные расстояния (в 1891 г. Эдисоном создан трансформатор).
Таким образом, сложилась современная техническая цепь: получение — передача — прием электроэнергии, благодаря чему промышленные предприятия могли размещаться вдали от энергетических баз. Производство электроэнергии было организовано на особых предприятиях — электростанциях.
Поскольку потребность в электроэнергии неуклонно росла, техническая мысль была занята поисками новых типов первичных двигателей: более мощных, более быстроходных, компактных, экономичных. Самым удачным изобретением стала многоступенчатая паровая турбина английского инженера Ч. Парсонса (1884), сыгравшая значительную роль в развитии энергетики — она позволяла во много раз повысить скорость вращения.
Наряду с тепловыми турбинами шли разработки гидравлических турбин. Впервые они были установлены на Ниагарской гидроэлектростанции в 1896 г., одной из крупнейших электростанций того времени.
Особенное значение получили двигатели внутреннего сгорания: Модели таких двигателей, работавших на жидком горючем (бензине), создали в середине 1880-х немецкие инженеры Г. Даймлер и К. Бенц. Эти двигатели использовались моторным безрельсовым транспортом. В 1896-1897 гг. немецкий инженер Р. Дизель изобрел двигатель внутреннего сгорания с большим коэффициентом полезного действия. Затем он был приспособлен к работе на тяжелом жидком топливе и получил исключительно широкое применение во всех отраслях промышленности и транспорта. В 1906 г. в США появились тракторы с двигателями внутреннего сгорания. Применение их в сельском хозяйстве началось с 1907 г. Массовое производство таких тракторов было освоено в годы Первой мировой войны.
Одной из ведущих отраслей становится электротехника, развиваются ее подотрасли. Так, получает широкое распространение электрическое освещение, вызванное строительством крупных промышленных предприятий, ростом больших городов, увеличившимся производством электроэнергии.
Изобретение лампы накаливания принадлежит русским ученым: А.Н. Лодыгину (лампа накаливания с угольным стерженьком в стеклянной колбе, 1873) и П.Н. Яблочкову (разработана конструкция электродуговой лампы, «электрической свечи», 1875).
В 1879 г. американский изобретатель Т. Эдисон предложил вакуумную лампу накаливания с угольной нитью. В последующем в конструкцию ламп накаливания изобретателями разных стран вносились улучшения. А.Н. Лодыгиным были разработаны лампы с металлическими нитями, в том числе с ми, применяемыми и сейчас. Хотя во многих странах мира еще долгое время сохранялось газовое освещение, но оно уже не могло противостоять распространению электрических осветительных систем.
Техника средств связи
Вторая НТР - это период широкого развития и такой отрасли электротехники, как техника средств связи. В конце XIX в. существенно усовершенствована аппаратура проволочного телеграфа, а к началу 1880-х были выполнены большие работы по конструированию и практическому применению телефонной аппаратуры. Изобретатель телефона - американец А.Г. Белл, получивший первый патент в 1876 г. Микрофон, отсутствовавший в аппарате Белла, был изобретен Т. Эдисоном и независимо ог него англичанином Д. Юзом. Благодаря микрофону увеличивался радиус действия телефонного аппарата. Телефонная связь стала быстро распространяться во всех странах мира. Первая телефонная станция в США была построена в 1877 г. Через два года введена в строй телефонная станция в Париже, в 1881 г. - в Берлине, Петербурге, Москве, Одессе, Риге и Варшаве. Автоматическая телефонная станция запатентована американцем А.Б. Строуджером в 1889 г.
Одно из важнейших достижений второй НТР - изобретение радио — беспроволочной электросвязи, основанной на использовании электромагнитных волн (радиоволн). Эти волны были впервые обнаружены немецким физиком Г. Герцем. Практическое создание такой связи осуществил выдающийся русский ученый А.С. Попов, продемонстрировавший 7 мая 1885 г. первый в мире радиоприемник. Затем последовала передача на расстояние радиограммы, в 1897 г. осуществлена радиотелеграфная связь между кораблями на расстоянии 5 км. В 1899 г. достигнута устойчивая длительная передача радиограмм на дистанцию 43 км.
Итальянский инженер Г Маркони в 1896 г. запатентован способ передачи электрических импульсов без проводов. Значительная материальная поддержка английских капиталистов позволила ему в 1899 г. осуществить передачи через Ла-Манш, а в 1901 г. — через Атлантический океан.
Электроника
В начале XX в. родилась еще одна отрасль электротехники - электроника. В 1904 г. английским ученым Дж.А. Флемингом бьша разработана двухэлектродная лампа (диод), которая могла использоваться для преобразования частот электрических колебаний. В 1907 г. американский конструктор Ли де Форест предложил трехэлектродную лампу (триод), с помощью которой можно было не только преобразовывать частоту электрических колебаний, но и усиливать слабые колебания. Начало промышленной электроники было положено введением ртутных выпрямителей для преобразования переменного тока в постоянный.
Промышленное применение электрической энергии, строительство электростанций, расширение электрического освещения городов, развитие телефонной связи и т.д. обусловили быстрое развитие электротехнической промышленности.
Развитие металлургии
Вторая НТР знаменовалась не только созданием новых отраслей, но и затронула старые отрасли промышленности, прежде всего металлургию. Быстрое развитие производительных сил — машиностроения, судостроения, военного производства, железнодорожного транспорта — предъявляло спрос на черные металлы. В металлургии вводились технические новшества, техника металлургии достигла огромных успехов. Значительно изменились конструкции и увеличились объемы доменных печей. были внедрены новые способы производства стали за счет передела чугуна в конверторе под сильным дутьем (Г. Бессемер, Англия, патент 1856) и в специальной печи - литой стали (Я. Мартен, Франция, 1864). Английский металлург С. Томас в 1878 г. предложил для выплавки стали применять метод обесфосфоривания фосфористых руд, залегавших в недрах Эльзаса и Лотарингии и до этого не использовавшихся. Эти районы стали главной сырьевой базой Германии.
Введенный в 1880-х годах электролитический способ получения алюминия способствовал развитию цветной металлургии. Электролитический метод был также использован для получения меди (1878). Эти методы составили основу современного сталелитейного производства, но во второй половине XX в. томасовский метод был вытеснен кислородно-конверторным процессом.
Достижения химической науки
Для второй НТР характерно проникновение химических методов обработки сырья практически во все отрасли производства. В таких отраслях, как машиностроение, электротехническое производство, текстильная промышленность, стала широко использоваться химия синтетических волокон — пластических масс, изоляционных материалов, искусственного ю-локна и пр. Американским химиком Дж. Хайетом был получен целлулолид (1869). В 1906 г. Л. Бакеланд произвел бакелит, затем были получены карболит и другие пластические массы. Разработка французским инженером Т Шардоне в 1884 г. метода изготовления искусственного волокна стала основой для производства нитрошелка, а с 1903 г. — искусственного шелка и вискозы.
В 1899-1900 гг. труды русского ученого П.Л. Кондакова позволили получить синтетический каучук из углеводов. Предложены методы изготовления аммиака, служащего исходным веществом для азотной кислоты, и других азотных соединений, необходимых в производстве красителей, удобрений и взрывчатых веществ. Лучшим оказался метод немецких ученых Ф. Габера и К. Боша.
Достижением второй НТР является крекинг-процесс - разложение нефти при высоких давлениях и температурах. Он обеспечивал повышенный выход бензина, поскольку резко возросла потребность в легком жидком топливе. Основы метода были заложены Д. И. Менделеевым, развиты русскими учеными и инженерами, в частности В. Г. Шуховым. Подобные изыскания проводились и в США, где в 1916 г. этот процесс был освоен в промышленном производстве.
Перед Первой мировой войной был получен синтетический бензин. Еще в 1903-1904 гг. русские химики школы А.Е. Фаворского открыли способ производства жидкого горючего из твердого топлива, однако это крупнейшее достижение русской технической мысли не было использовано. Промышленный метод изготовления легкого горючего из угля осуществил немецкий инженер Ф. Бергиус, что имело важное экономическое и военное значение для Германии, не располагавшей естественными нефтяными ресурсами.
Развитие машиностроения. Конвейерное производство Вторая НТР внесла много нового для усовершенствования технической сферы легкой, полиграфической и других отраслей промышленности. Это автоматический ткацкий станок, автомат для производства бутылок, механический наборный станок и т.д.
Вторая НТР - это создание поточной системы и изобретение конвейера. В конце XIX в. производство стандартизированных изделий создало предпосылки для разработки поточной системы. На автомобильных заводах Г. Форда в США поточно-массовое производство впервые приобрело законченную форму (с применением конвейеров). В 1914 г. скорость сборки одного автомобиля была доведена до полутора часов.
Внедрение поточного производства изменило характер заводского оборудования в машиностроении. Стали вводиться специализированные станки для изготовления деталей — винтов, шайб, гаек, болтов и т.д. В текстильной промышленности в 1890 г. появился автоматический ткацкий станок английского конструктора Дж. Нортропа.
Новые технологии производства — новые виды транспорта, военная техника
Важнейшим направлением второй НТР стал транспорт — появились новые виды транспорта и совершенствовались существовавшие средства сообщения.
«Эра стальных мостов». Железная дорога
Такие потребности практики, как рост объемов и скорости перевозок, способствовали совершенствованию железнодорожной техники. В последние десятилетия XIX в. завершился переход к стальным железнодорожным рельсам. При строительстве мостов все более широко применялась сталь. «Эру стальных мостов» открыл арочный мост, построенный в США в 1874 г. через р. Миссисипи у города Сент-Луис. Его автор Дж. Иде. Проезжую часть висячего Бруклинского моста (около Нью-Йорка) с центральным пролетом в 486 м поддерживали стальные канаты. Холл-Гейтский арочный мост в Нью-Йорке сооружен в 1917 г. полностью из лигированной стали (высокоуглеродистой).
Крупнейшие стальные мосты были возведены в России через Волгу (1879), Енисей (1896) под руководством инженера НА. Боголюбского. С 1880-х при строительстве мостов наряду со сталью начали шире применять железобетон.
На железных дорогах, прокладываемых в Альпах, были прорыты крупнейшие тоннели - Сен-Готардский (1880), Симплонский (1905). В России через Сурамский горный кряж на Кавказской железной дороге тоже был прорыт тоннель. Из подводных тоннелей самым значительным был семикилометровый Севернский тоннель в Англии (1885).
Совершенствовался подвижной состав на железных дорогах - резко возросли мощность, сила тяги, быстроходность, вес и размеры паровозов, грузоподъемность вагонов. С 1872 г. на железнодорожном транспорте введены автоматические тормоза, в 1876 г. разработана конструкция автоматической сцепки.
В конце XIX в. в Германии, России, США велись эксперименты по введению на железных дорогах электрической тяги. Первая линия электрического городского трамвая открылась в Германии в 1881 г. В России строительство трамвайных линий началось с 1892 г. В 1890-е в ряде стран появились пригородные и междугородные электрические железные дороги. Однако против этого выступали активно железнодорожные, угольные, нефтяные компании.
В эпоху второй НТР появился новый вид транспорта — автомобильный. Первые автомобили были сконструированы немецкими инженерами К. Бенцем и Г. Даймлером. Промышленное производство автомобилей началось с 1890-х годов, причем в нескольких странах. Способствовало успеху автомобилей изобретение в 1895 г. ирландским инженером Дж. Дэнлопом резиновых шин. Высокие темпы развития автомобилестроения повлекли за собой строительство шоссейных дорог.
Водный и воздушный транспорт Развивался флот. С 1860-х на морских судах стали применять поршневые паровые машины с многократным расширением пара. В 1894—1895 гг. были проведены первые опыты по замене поршневых двигателей паровыми турбинами. Стремились также к увеличению мощности и скорости морских и океанских паровых судов: пересечение Атлантического океана стало возможным теперь за семь-пять дней.
Приступили к строительству судов с двигателями внутреннего сгорания - теплоходов. Первый теплоход - нефтеналивное судно «Вандал» — был построен русскими конструкторами в 1903 г. В Западной Европе строительство теплоходов началось с 1912 г.
Крупнейшим событием в развитии морского транспорта было сооружение в 1914 г. Панамского канала, имевшего не только экономическое, но и политическое и юенное значение.
Английский фешенебельный пароход «Титаник» выходит в свой первый и последний рейс 10 апреля 1912 г.
Новый вид транспорта рубежа XIX и XX вв. - воздушный. Он подразделялся на аппараты легче воздуха — дирижабли и тяжелее воздуха - самолеты {аэропланы). В 1896 г. немецкий конструктор Г. Зелырерт применил для дирижаблей двигатель внутреннего сгорания, работавший на жидком топливе, что способствовало развитию дирижаблестроения во многих странах.
Но решающую роль в развитии воздушного транспорта сыграли самолеты. В разработку авиационных проблем и вопросов воздухо-плавания огромный вклад внесли русские ученые и изобретатели: основоположники современной гидро- и аэродинамики Д Я. Менделеев, Л.М. Поморцев, С.К. Джевецкий, К.Э. Циолковский.
Большая заслуга в освоении техники полетов принадлежит немецкому инженеру О. Лилиенталю.
Первые опыты конструирования самолетов с паровыми двигателями осуществили А.Ф. Можайский (1882-1885, Россия), К. Адер (1890-1893, Франция) X. Максим (1892-1894, США).
Широкое развитие авиации стало возможным после установления легких и компактных бензиновых двигателей. В 1903 г. в США братья У. и О. Райт совершили четыре полета на самолете с двигателем внутреннего сгорания. Сначала самолеты имели спортивное значение; потом их стали использовать в военном деле, а затем — для перевозки пассажиров.
Первый полет самолета Можайского. 20 июля (1 августа) 1882 г.
Развитие военной техники Значительными были во второй НТР успехи военной техники. Основные направления ее развития включали:
(1) автоматизацию стрелкового оружия. На вооружение были приняты станковые пулеметы американского инженера X. Максима (1883), тяжелые пулеметы Максима и Гочкиса, легкие пулеметы Льюиса. Было создано несколько типов автоматических винтовок;
(2) автоматизацию артиллерии. Перед Первой мировой войной и в ходе ее были сконструированы новые скорострельные орудия — полуавтоматические и автоматические. Дистанция обстрела увеличилась с 16-18 км до 120 км (уникальная немецкая пушка «Большая Берта»). Был введен ряд тягачей с двигателями внутреннего сгорания для передвижения тяжелой артиллерии. Были созданы зенитная артиллерия для борьбы с налетами вражеской авиации. Появились танки и бронеавтомобили, вооруженные пулеметами и орудиями небольшого калибра;
(3) производство взрывчатых веществ. Их выпуск возрос в колоссальных размерах. Были осуществлены новые изобретения (бездымный порох), развито производство связанного азота из воздуха (сырья для получения взрывчатых веществ). Применение отравляющих веществ в ходе Первой мировой войны потребовало средств защиты от них - в 1915 г. русским инженером Н.Д. Зелинским был разработан угольный противогаз. Началось строительство газоубежищ;
(4) широкое использование средств воздухоплавания и авиации. Самолеты выполняли функции не только военной разведки, но и истребителей. С лета 1915 г. самолеты стали вооружать пулеметами. Скорость самолетов-истребителей была доведена до 190-220 км в час. Появились самолеты-бомбардировщики. Еще до войны (в 1913 г.) авиаконструктор И. Сикорский построил в России первый четырехмоторный самолет «Русский витязь», в ходе войны воюющие страны усовершенствовали бомбардировочную авиацию;
(5) создание крупных надводных кораблей - броненосцев, дредноутов. Стало реальностью подводное плавание. В последние годы XIX в. подводные лодки строили в разных странах. В надводном положении они приводились в движение двигателями внутреннего сгорания, а в подводном — электродвигателями. Особенно большое внимание строительству подводных лодок уделяла Германия, наладившая их производство к началу Первой мировой войны.
Результаты второй научно-технической революции и третий макроцикл
Вторая научно-техническая революция охватила различные сферы промышленного производства. Превзошла она предыдущую эпоху по темпам технического прогресса. В начале XIX в. порядок изобретений исчислялся двузначным числом, в эпоху второй НТР — четырехзначным, т.е. тысячами. Наибольшее число изобретений запатентовано американцем Т. Эдисоном (более 1000).
По своему характеру вторая НТР отличалась от промышленного переворота XVIII—XIX вв. Если промышленный переворот привел к становлению машинной индустрии и изменению социальной структуры общества (формированию двух новых классов — буржуазии и рабочего класса) и утверждению господства буржуазии, то вторая НТР не затронула тип производства, общественную структуру и характер социально-экономических отношений. Ее результаты — изменения в технике и технологии производства, реконструкция машинной индустрии, превращение науки из малой в большую. Поэтому ее называют не промышленной революцией, а научно-технической.
НТР привела к появлению многих новых отраслей промышленного производства, которых история не знала. Это электротехническая, химическая, нефтедобывающая, нефтеперерабатывающая и нефтехимическая, автомобильная промышленность, самолетостроение, производство портландцемента и железобетона и др.
Происходила не только диверсификация отраслей, но и подотраслей, что можно видеть на структуре, например, машиностроения. В полную силу заявило о себе транспортное машиностроение (производство локомотивов, автомобилей, самолетов, речных и морских судов, трамваев и др.). В эти годы наиболее динамично развивалась такая отрасль машиностроения, как автомобильная. Первые автомобили с бензиновым двигателем начали создавать в Германии К. Бенц и Г. Даймлер (ноябрь 1886 г.), но вскоре у них уже появились зарубежные конкуренты. Так, первый автомобиль на заводе Г. Форда в США был выпущен в 1892 г., но уже к началу XX столетия это предприятие производило в год 4 тыс. автомобилей.
Бурное развитие новых отраслей машиностроения вызвало изменение структуры черной металлургии — повысился спрос на сталь и темпы ее выплавки значительно превзошли прирост производства чугуна.
Технические сдвиги конца XIX — начала XX в. и опережающее развитие новых отраслей предопределили изменение структуры мирового промышленного производства. Если до начала второй НТР в общем объеме выпускаемой продукции преобладала доля отраслей группы «Б» (производство предметов потребления), то в результате второй НТР повысился удельный вес отраслей группы «А» (производство средств производства, отраслей тяжелой промышленности). Это привело к тому, что усилилась концентрация производства, стали преобладать крупные предприятия. В свою очередь, крупное производство нуждалось в крупных капитальных вложениях и вызывало необходимость объединения частных капиталов, которое осуществлялось образованием акционерных обществ. Завершением этой цепочки изменений стало создание, образование монополистических союзов, т.е. монополий, как в области производства, так и в области капиталов (финансовых источников).
Таким образом в результате произошедших изменений в технике и технологии производства и развитии производительных сил, вызванных второй НТР, были созданы материальные предпосылки для образования монополий и перехода капитализма от промышленной стадии и свободной конкуренции к монополистической стадии. Способствовали процессу монополизации и экономические кризисы, регулярно происходившие в конце XIX в., а также в начале XX в. (1873,1883,1893, 1901-1902 и др.). Поскольку в ходе кризисов разорялись прежде всего мелкие и средние предприятия, то это способствовало концентрации и централизации производства и капитала.
Монополия как форма организации производства и капитала в конце XIX — начале XX в. заняла господствующие позиции в социально-экономической жизни ведущих стран мира, хотя степень концентрации и монополизации по странам была неодинаковой; были различными преобладающие формы монополий. В результате второй НТР вместо индивидуальной формы собственности основной становится акционерная, в сельском хозяйстве - фермерская; развивается кооперативная, а также муниципальная.
На этом историческом этапе ведущее место в мире по промышленному развитию занимают молодые капиталистические страны — США и Германия, значительно продвигается Япония, и отстают бывшие лидеры - Англия и Франция. Центр мирового экономического развития при переходе к монополистической стадии капитализма перемещается из Европы в Северную Америку Первой державой мира по экономическому развитию стали Соединенные Штаты Америки.
В ходе этой второй НТР началась восходящая ветвь третьего макроцикла. Ее определяют для ведущих стран 1895—1915 гг. и связывают с широким использованием на транспорте каналов, железных дорог, внедрением электричества, массового автомобилестроения и авиации, изменением приоритетов в энергоносителях. Если вначале главными были дрова, то теперь — каменный уголь и нефть. В качестве перспективного топлива уголь начали применять в первой половине XIX в., пик пришелся на 1900 г., хотя он широко продолжал использоваться в электроэнергетике и сталелитейной промышленности (эпоха угля и стали). Таким образом, ученые считают, что цикл использования угля составляет минимум 150 лет с протяженностью восходящей линии 60-70 лет и нисходящей - 90 лет. Такая же тенденция с нефтью. Последние достижения в химии, вероятно, дадут этим видам топлива второе рождение. Поэтому цикл использования энергоносителей значительно продолжительнее 50-летних длинных волн.