Богач Кирилл Сергеевич Научный руководитель: Корхин Арнольд Самуилович Национальный горный университет
Прогнозирование экономических процессов с помощью нейронных сетей
Рассматривается проблема прогнозирования временного ряда (биржевых котировок фондовых, товарных и индексных рынков) на основе предыдущих значений. Предложена модель, которая является задачей оптимизации и основывается на теории нейронных сетей.
Среди основных подходов технического анализа можно выделить следующие методы.
Метод графической аналитики. Для прогнозирования используются график инструмента и графические построения, выполненные на нём. Применение данного метода эффективно в комплексе с другими методиками. Недостатком является значительное влияние субъективного психологического фактора.
Прогнозирование, основанное на сглаживании данных. Привлекательными являются рынки, которым присуще постепенное изменение тенденций, отсутствие резких прыжков котировок и наличие выраженных трендов. Поскольку в реальности таких рынков мало, то данные методы применяются, в основном, в комбинации с другими методами технического анализа.
Регрессионные методы. С помощью этих методов строятся модели множественной регрессии, коэффициенты которой подбираются на основе наблюдений в прошлом. Они показывают стабильные результаты на спокойных рынках, но плохо приспосабливаются к резким изменениям тенденций.
Методы Бокса-Дженкинса. Подобны регрессионным методам.
Гармонический анализ Фурье. В этом случае котировки рынка представляют в виде рядов или интегралов Фурье. Эти методы еще называют спектральными, потому что они отыскивают спектр амплитуд некоторого стационарного процесса. Главный аргумент невозможности эффективного использования данных методов - нестабильный спектр. С технической точки зрения, это действительно очень затрудняет использование спектральных методов для анализа рынка.
Нелинейные методы анализа экономической и финансовой информации. В условиях возрастающей хаотичности мировых процессов в финансовой сфере традиционные линейные методы все чаще неспособны распознать ключевые переломы в тенденциях рынка. Это заставляет вернуться к идеям, согласно которым изменение рыночных показателей во времени не является чисто случайным явлением.
Совершенно другой подход предлагает теория динамических систем или теория хаоса. С помощью этой теории удается среди явлений, считавшихся ранее случайными, выделить стойкие тенденции, которые определяют порядок и некоторую структуру. Основное предположение заключается в том, что поведение системы - это результат множества нелинейных взаимодействий, вследствие чего даже небольшие изменения начальных данных могут привести к совсем другому дальнейшему поведению системы.
Данное направление исследований получило признание у практиков, потому что оно согласовывается с их интуитивными представлениями о том, что в совокупной картине изменений показателей финансового рынка могут присутствовать определенные закономерности, которые можно распознать и на их основе построить свою инвестиционную и торговую деятельность. Такие закономерности можно получить путём анализа временных рядов или анализа сечений. В любом случае применение нейронных моделей приносит ощутимую прибыль, и это хорошо согласовывается с тезисом Герберта Саймона об «ограниченной разумности», согласно которому на эффективность рынка влияет ограниченность возможностей человека в работе с информацией. Более того, нейронные сети идеально приспособлены для выявления нелинейных зависимостей при условии отсутствия априорных знаний об основной модели. Их можно использовать везде, где обычно применялись линейные методы и оценивание с помощью стандартных статических методов.
Существуют и другие причины роста интереса к нелинейным методам анализа финансовых рынков: например, большая интернационализация структуры рыночных операций в течение последних лет.
Когда мы рассматриваем сектор рынка, соответствующий долгосрочным соглашениям, следует признать, что определяющее влияние на цены оказывают здесь такие экзогенные факторы, как: обменные курсы и процентные ставки; показатели экономического роста; тенденции цен; показатели прибылей.
Поведение рынка достаточно удовлетворительно описывается так называемой гипотезой эффективности рынка, согласно которой вся доступная информация о текущих и будущих событиях дисконтируется в текущие цены рынка таким образом, что изменения цен вызываются лишь появлением свежей информации. В краткосрочной перспективе, напротив - появляются новые возможности для прогнозов, связанные с учетом регулирования платежей, обратных связей и многочисленных технических и структурных факторов.
Старые парадигмы финансовой науки, такие как модели случайного блуждания или гипотезы эффективности рынка, внушают нам представление о том, что финансовые рынки склонны плавно и разумно приспосабливаться к новой информации. При этом убедительно выглядят описания поведения рынка на основе линейных зависимостей и законов обращения трендов.
Однако действительность показывает, что поведение финансовых рынков едва ли может быть описано линейными трендами. Происходящие в реальности драматические обвалы рынка при отсутствии существенных изменений информации, резкие изменения условий доступа и сроков при переходе компанией какого-то невидимого порога в кредитной сфере - все это проявление нелинейности. Необходимо учесть, что преувеличенные обещания эффективности применения данных методов могут подорвать доверие к этим научным разработкам.
Литература: Горелов С. Математические методы в прогнозировании. - М.: Прогресс, 1993. Панасюк Б., Сменковский А. О некоторых методических подходах к краткосрочному прогнозированию макроэкономических показателей // Экономика Украины. - 1998. - №10. Цыгичко В. Основы прогнозирования систем. - М.: Финансы и статистика, 1986. Саати М.А. Моделирование сложных систем. - М.: Наука, 1993.