Международный экономический форум 2009

Савенков В.И.

Этапы экономико-математического моделирования

Процесс экономико-математического моделирования включает в себя три структурных элемента: объект исследования, субъект (исследователь), модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Ниже представлена общая схема процесса моделирования:

Пусть имеется некоторый объект, который нужно исследовать методом моделирования. На первом этапе конструируем другой объект - модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте- оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго огранниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.

Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели[1 ,c.35].

На четвертом этапе осуществляются практическая проверка с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвращаемся к проблематике объекта-оригинала.

Моделирование представляет собой циклический процесс, т.е. за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Теперь перейдем к процессу экономико-математического моделирования, т.е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Выделим и рассмотрим подробно шесть этапов:

1.При постановке экономической проблемы  нужно сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

2.При построении математической модели формализуются экономические проблемы, т.е выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уочняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другиестороны учитываются приближенно. Оправдано стремление постоить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпослок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация приводит к неизвестной ранее математической структуре.

3.Во время математического анализа модели чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входитьв решение, в каких пределах они изменяются, каковы тенденции их изменения и т.д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования [2 ,c.143].

4.Подготовка исходной информации заключается в экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

5.Численное решение - это этап, который включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей являестя единственно возможным.

6.Во время анализа численных результатов прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Применение численных результатов моделирования в экономике направлено на решение практических задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных процессо, выработка управленческих решений на всех уровня хозяйственной иерархии).

Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что поста-новка задачи или противоречива, или приводит к слишком сложной математи-ческой модели; в этом случае исходная постановка задачи должна быть скорректирована.  Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информа-ции. Начав исследования с построения простой модели, можно получить полезные результаты, и затем перейти к созданию более совершенной модели.

 Литература:

1. Е. Г. Гольштейн, Д. Б. Юдин «Задачи линейного программирования транспортного типа», Москва, 2003.

2. И. Л. Акулич, В. Ф. Стрельчонок «Математические методы и компьютерные технологии решения оптимизационных задач», Киев, 2005.