Характеристика закономерности рядов распределения
С помощью рядов распределения решается важнейшая задача статистики – характеристика и измерение показателей колеблемости для варьирующих признаков.
В вариационных рядах существует определенная связь в изменении частот и значений варьирующего признака: с увеличением варьирующего признака величина частот вначале возрастает до определенной величины, а затем уменьшается. Такого рода изменения называются закономерностями распределения.
Важные свойства кривой распределения – это степень ее асимметрии, высоко– или низковершинность, которые в совокупности характеризуют форму или тип кривой распределения.
Важная задача – это определение формы кривой.
Характер общего распределения предполагает оценку степени его однородности и вычисление показателей асимметрии и эксцесса.
Симметричным называют распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой.
Для симметричных распределений средняя арифметическая, мода и медиана равны между собой.
Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка.
Общим является нормальное распределение, которое может быть представлено графически в виде симметричной куполообразной кривой.
Куполообразная форма кривой показывает, что большинство значений концентрируется вокруг центра измерения, и в действительно симметричном одновершинном распределении средняя, мода и медиана совпадут.
Закон нормального распределения предполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя.
Теоретической кривой распределения называют кривую распределения, которая выражает общую закономерность данного типа.
В кривой нормального распределения отражается закономерность, которая возникает при взаимодействии множества случайных причин.
Для симметричных распределений рассчитывается показатель эксцесса (островершинности).
Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.
Оценка показателей асимметрии и эксцесса дает возможность сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.