Динамические эконометрические модели
Динамической эконометрической моделью называется модель, которая в настоящий момент времени учитывает значения входящих в неё переменных, относящихся не только к текущему, но и к предыдущему моментам времени.
В качестве примера динамических эконометрических моделей можно привести модели вида:
yt=f(xt,xt–l),
yt=f(xt,yt–l).
Модель регрессии вида:
yt=f(x1…xn)=f(xi) не относится к динамическим эконометрическим моделям.
1) Динамические эконометрические модели делятся на два основных типа:
2) динамические модели, в которых значения переменных, относящихся к прошлым моментам времени (лаговые значения), включены в модель с текущими значениями этих переменных. К таким моделям относятся:
а) модель авторегрессии;
б) модель с распределённым лагом.
Моделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной.
Пример модели авторегрессии:
yt=β0+β1xt+δ1yt–1+εt.
Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.
Пример модели с распределённым лагом:
yt=β0+β1xt+β2xt–1+…+βLxt–l+εt.
где L – это величина временного лага (запаздывания) между рядами;
3) динамические модели, в которые входят переменные, отражающие предполагаемый или желаемый уровень результативной переменной или одной из факторных переменных в определённый момент времени (t+1). Величина желаемого уровня является неизвестной и рассчитывается на основании той информации, которая имеется в наличии на предшествующий момент времени (t). В зависимости от способа расчёта желаемых переменных различают следующие виды моделей:
а) модель адаптивных ожиданий (МАО);
б) модель частичной (неполной) корректировки (МЧК)
Моделью адаптивных ожиданий называется динамическая эконометрическая модель, которая учитывает предполагаемое или желаемое значение факторной переменной x*t+1.
Общий вид модели адаптивных ожиданий:
Примером модели адаптивных ожиданий является модель зависимости предполагаемой в будущем периоде (t+1) индексации заработных плат и пенсий на текущие цены.
Моделью частичной (неполной) корректировки называется динамическая эконометрическая модель, которая учитывает предполагаемое (или желаемое) значение результативной переменной y*t.
Общий вид модели частичной корректировки:
Примером модели частичной корректировки является модель Литнера, которая отражает зависимость желаемого объёма дивидендов y*t от фактического текущего объёма прибыли xt.
Неизвестные коэффициенты динамических эконометрических моделей нельзя рассчитать с помощью традиционного метода наименьших квадратов, потому что они не будут удовлетворять свойствам несмещённости, состоятельности и эффективности.
Неизвестные коэффициенты моделей авторегрессии оцениваются с помощью метода инструментальных переменных.
Для моделей с распределённым лагом в зависимости от структуры лага для оценивания неизвестных коэффициентов применяются метод Алмон и метод Койка. Суть данных методов состоит преобразовании исходной модели с распределённым лагом к модели авторегрессии, оценки неизвестных параметров которой можно рассчитать с помощью метода инструментальных переменных.
Для определения оценок неизвестных коэффициентов модели адаптивных ожиданий и модели частичной корректировки их также преобразуют в модели авторегрессии.