Спецификация и приведенная форма эконометрических моделей в виде системы одновременных уравнений. Эконометрическая модель Самуэльсона-Хикса делового цикла экономики
Определение явного вида эконометрической модели называется спецификацией эконометрической модели.
При спецификации эконометрических моделей принято учитывать четыре принципа:
- эконометрические утверждения и закономерности должны быть переведены на математический язык;
- количество уравнений в модели должно быть равно числу эндогенных переменных;
- переменные должны быть датированы;
- в модель должен быть включён параметр случайной ошибки, чтобы охарактеризовать влияние случайных факторов.
Существуют следующие формы спецификации моделей:
- структурная форма модели, когда эндогенные переменные не выражены явно через предопределенные переменные;
- приведенная форма модели, когда эндогенные переменные представляют собой явно выраженные функции от предопределенных переменных.
Экономическим объектом в эконометрической модели Самуэльсона-Хикса является закрытая экономика.
Состояние закрытой экономики в текущем периоде t характеризуется переменными (Yt, Ct, It, Gt),
где Yt – валовой внутренний продукт (ВВП);
Ct – уровень потребления;
It – величина инвестиций;
Gt – государственные расходы.
При составлении спецификации модели Самуэльса-Хикса необходимо учесть следующие экономические утверждения:
- текущее потребление объясняется уровнем валового внутреннего продукта в предыдущем периоде, увеличиваясь одновременно с ним, но с меньшей скоростью;
- величина инвестиций прямо пропорциональна приросту валового внутреннего продукта за предшествующий период (прирост ВВП за предшествующий период определяется как разность Yt–1и Yt–2);
- государственные расходы возрастают с постоянным темпом роста;
- текущее значение валового внутреннего продукта представляет собой сумму текущих уровней потребления, инвестиций и государственных расходов (тождество системы национальных счетов).
Если вышеперечисленные экономические утверждения перевести на математический язык, то мы придём к спецификации модели вида (1):
Ct=a0+a1Yt–1,
It=b*(Yt–1–Yt–2),
Gt=g*Gt–1,
Yt=Ct+It+Gt,
при ограничениях:
01<1,
b>0,
g>0.
Спецификация (1) модели близка к приведённой форме: текущие переменные Ct, It и Gt являются явными функциями предопределен–ных переменных, а переменную Yt можно сделать явной функцией путём подстановки правых частей первых трёх уравнений в правую часть четвёртого уравнения.
В итоге получим приведённую форму (2) модели Самуэльсона-Хикса:
Ct=a0+a1Yt–1,
It=b*(Yt–1–Yt–2),
Gt=g*Gt–1,
Yt=a0+a1Yt–1– b*(Yt–1–Yt–2)+g*Gt–1,
при ограничениях:
01<1,
b>0,
g>0.
Основное отличие эконометрических моделей от других видов моделей заключается в обязательном включении в модель случайной ошибки.
Случайная ошибка характеризуется следующими свойствами:
- математическое ожидание случайной ошибки при всех значениях эндогенной переменной равно нулю;
- дисперсии случайной ошибки удовлетворяют свойству гомоскедастичности, т. е. постоянства дисперсий.
Запишем спецификацию модели вида (1) с учётом случайной ошибки:
Ct=a0+a1Yt–1, (3)
It=b*(Yt–1–Yt–2),
Gt=g*Gt–1,
Yt=Ct+It+Gt,
при ограничениях:
01<1,
b>0,
g>0,
E(ut|Yt–1)=0,
σ(ut|Yt–1)=σu,
σ(νt|Yt–1,Yt–2)=σν,
E(wt|Gt–1)=0.
С учётом первой и третьей спецификаций модели Самэльсона-Хикса, получим приведённую форму данной модели (4):
Ct=a0+a1Yt–1,
It=b*(Yt–1–Yt–2),
Gt=g*Gt–1,
Yt=a0+(a1+b)Yt–1– b*Yt–2+g*Gt–1+(ut+νt+wt)
при ограничениях:
01<1,
b>0,
g>0.