Системы эконометрических уравнений
Если экономический процесс не поддаётся описанию посредством одной модели регрессии, то в подобных ситуациях прибегают к построению нескольких эконометрических уравнений, которые в совокупности образуют систему.
В состав системы эконометрических уравнений входят множество зависимых или эндогенных переменных и множество предопределённых переменных (лаговые и текущие независимые переменные, а также лаговые эндогенные переменные).
Системы эконометрических уравнений используются для объяснения текущих значений эндогенных переменных в зависимости от значений предопределённых переменных.
Системы эконометрических уравнений, которые используются в эконометрическом моделировании, подразделяются на три типа.
1. Система независимых эконометрических уравнений вида:
Данная система характеризуется тем, что каждая эндогенная переменная y является функцией от одних и тех же переменных x;
2. Система рекурсивных эконометрических уравнений вида:
Данная система характеризуется тем, что в каждом последующем уравнении эндогенная переменная выступает в качестве экзогенной переменной;
3. Система взаимозависимых эконометрических уравнений вида:
Данная система характеризуется тем, что эндогенные переменные в одних уравнениях входят в левую часть (т. е. являются результативными переменными), а в других уравнениях – в правую часть (т. е. являются факторными переменными).
В системе взаимозависимых уравнений значения результативных и факторных переменных формируются одновременно под влиянием внешних факторов. Поэтому данная система также называется системой одновременных или совместных уравнений.
В системах независимых и рекурсивных уравнений каждое уравнение может рассматриваться самостоятельно, поэтому оценки неизвестных коэффициентов этих уравнений можно рассчитать с помощью классического метода наименьших квадратов.
В системе одновременных уравнений каждое уравнение не может рассматриваться как самостоятельная часть системы, поэтому оценки неизвестных коэффициентов данных уравнений нельзя определить с помощью классического метода наименьших квадратов, т. к. нарушаются три основных условия применения этого метода:
а) между переменными системы уравнений существует одновременная зависимость, т. е. в первом уравнении системы y1 является функцией от y2, а во втором уравнении уже y2 является функцией от y1;
б) наличие проблема мультиколлинеарности, т. е. во втором уравнении системы y2 зависит от x1, а в других уравнениях обе переменные являются факторными;
в) случайные ошибки уравнения коррелируют с результативными переменными.
Следовательно, если неизвестные коэффициенты системы одновременных уравнений оценивать с помощью классического метода наименьших квадратов, то в результате мы получим смещённые и несостоятельные оценки.
Основной моделью системы одновременных уравнений является модель одновременного формирования спроса Qd и предложения Qs товара в зависимости от его цены P в момент времени t. Данная модель включает в себя три уравнения:
1) уравнение предложения:
2) уравнение спроса:
3) тождество спроса, справедливое при условии, что рынок находится в состоянии равновесия:
Qst = Qdt
где
Qst – предложение товара в момент времени t;
Qdt – спрос на товар в момент времени t;
Pt – цена товара в момент времени t;
Pt–1 – цена товара в предшествующий момент времени (t–1);
It – доход потребителей в момент времени t.