Линейные модели стационарного временного ряда
Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.
К основным линейным моделям стационарных временных рядов относятся:
- модели авторегрессии;
- модели скользящего среднего;
- модели авторегрессии скользящего среднего.
Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:
yt=δ1yt-1+δ2yt-2+…+δpyt–p+νt,
где p – порядок модели авторегрессии;
δt – коэффициенты модели авторегрессии, подлежащие оцениванию;
νt – белый шум (случайная величина с нулевым математическим ожиданием).
Модель авторегрессии порядка р обозначается как АР(р) или AR(p).
На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.
Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:
yt=δyt–1+νt.
Для модели АР(1) действует ограничение |δ|<1.
Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:
yt=δ1yt-1+δ2yt-2+νt.
На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:
- (δ1+δ2)<1;
- (δ1–δ2)<1;
- |δ2|<1.
Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.
Общая модель скользящего среднего порядка q имеет вид:
yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,
где q – порядок модели скользящего среднего;
φt – неизвестные коэффициенты модели, подлежащие оцениванию;
νt – белый шум.
Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).
На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).
Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.
Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.
Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).
Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:
yt=δyt–1+νt–φνt–1,
где δ – параметр процесса авторегрессии;
φ – параметр процесса скользящего среднего;
νt – белый шум.
На коэффициенты данной модели накладываются следующие ограничения:
- |δ|<1 – условие, обеспечивающее стационарность смешанной модели;
- |φ|‹1 – условие, обеспечивающее обратимость смешанной модели.
Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.