Оценка коэффициентов модели парной регрессии с помощью выборочного коэффициента регрессии
Помимо метода наименьших квадратов, с помощью которого в большинстве случаев определяются неизвестные параметры модели регрессии, в случае линейной модели парной регрессии осуществим иной подход к решению данной проблемы.
Линейная модель парной регрессии может быть записана в виде:
где у – значения зависимой переменной;
х – значения независимой переменной;
у – среднее значение зависимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:
yi– значения зависимой переменной,
n – объём выборки;
x – среднее значение независимой переменной, которое определяется на основании выборочных данных вычисленное по формуле средней арифметической:
Параметр βyx называется выборочным коэффициентом регрессии переменной у по переменной х. Данный параметр показывает, на сколько в среднем изменится зависимая переменная у при изменении независимой переменной х на единицу своего измерения.
Выборочный коэффициент регрессии переменной у по переменной х рассчитывается по формуле:
где ryx – это выборочный парный коэффициент корреляции между переменными у и х, который рассчитывается по формуле:
уx – среднее арифметическое значение произведения зависимой и независимой переменных:
Sy – показатель выборочного среднеквадратического отклонения зависимой переменной у. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения зависимой переменной у от её среднего значения. Он рассчитывается по формуле:
у2 - среднее значение из квадратов значений зависимой переменной у:
у2 - квадрат средних значений зависимой переменной у:
Sx – показатель выборочного среднеквадратического отклонения независимой переменной х. Этот показатель характеризует, на сколько единиц в среднем отклоняются значения независимой переменной х от её среднего значения. Они рассчитывается по формуле:
x2 - среднее значение из квадратов значений независимой переменной х:
x2 - квадрат средних значений независимой переменной х:
При использовании рассмотренного подхода оценивания неизвестных параметров линейной модели парной регрессии, следует учитывать что ryx=rxy, однако βyx≠βxy.